DITERPENES FROM THE RED ALGA SPHAEROCOCCUS CORONOPIFOLIUS

Francesco Cafieri, Lorenzo de Napoli, Ernesto Fattorusso and Ciro Santacroce*

Dipartimento di Chimica delle Sostanze Naturali dell'Università di Napoli, Via L. Rodinò 22, 80138 Napoli, Italy; *Dipartimento di Chimica Organica e Biologica dell'Università di Napoli, Via Mezzocannone 16, 80134 Napoli, Italy

(Received 12 May 1986)

Key Word Index—Sphaerococcus coronopifolius; Rhodophyta; diterpenes; structural determination.

Abstract—Four new diterpenes have been isolated from the red alga Sphaerococcus coronopifolius. Their structures have been established on the basis of chemical and spectral evidence.

INTRODUCTION

Extensive studies in our laboratory on the constituents of the red alga *Sphaerococcus coronopifolius* have resulted in the isolation of a number of diterpenes which have been fully characterized and for which a general biogenetic scheme starting from geranylgeraniol has been proposed [1, 2].

Further studies on the same organism have now added four new compounds: 12S-hydroxybromosphaerodiol (1), 12R-hydroxybromosphaerol (2), isosphaerodiene-1 (3) and isosphaerodiene-2 (4), obtained in small amounts and identified on the basis of spectral and chemical evidence.

RESULTS AND DISCUSSION

472 F. CAFIERI

d) and two tertiary methyl groups (δ 1.45, 3H, s and 1.27, 3H, s). Most structural detail was obtained from ¹H NMR analysis involving extensive double resonance experiments which indicated the partial structures (Table 1): $C_{9-10}-C_{1-4}-C_{18-20}$, C_{6-7} and C_{12-14} .

The above data were interpreted in terms of the structure 1 based on a carbon skeleton present in several bromoditerpenes of S. coronopifolius. Confirmation of the proposed structure was obtained as follows.

12S-Hydroxybromosphaerol (5), a metabolite previously found in the same marine organism [3], by treatment with H₂/Pd-C afforded the dihydroderivative 6 which was in turn obtained from 1 by catalytic hydrogenation in the presence of perchloric acid.

This result established the absolute configuration of 1, apart from the chirality of C-1, which must be S as indicated by the J value (10 Hz) between H-1 and H-10 indicative of the quasi-equatorial nature of the hydroxyl group.

The second compound (2) had very similar IR and MS spectra to those of 5. The 1H NMR spectral characteristics of 2 were essentially identical to those of 5, except in the region influenced by the stereochemistry of C-12 (2: δ 2.36, 1H, q, J = 12 Hz, H_{ax} -13; 3.36, 1H, dd, J = 12 and 4 Hz, H-12; 3.90, 1H, dd, J = 12 and 3 Hz, H-14; 5: δ 2.72, 1H, dt, J = 3.5 and 12 Hz, H_{ax} -13; 3.47, 1H, t, J = 3.5 Hz, H-12; 4.48, 1H, dd, J = 3 and 13 Hz, H-14). The significant large differences in the chemical shifts and in the coupling constants of H-14, H_{ax} -13, and H-12 suggested that compounds 2 and 5 were C-12 epimers. This was confirmed by the conversion of 2 to sphaerococcenol (7), the major bromoditerpene from S. coronopifolius [4], by treatment with pyridinium chlorochromate in the presence of sodium acetate at room temperature.

Compound 3, C₂₀K₃₂, has not been previously reported as a naturally occurring compound, but has been synthesized by dehydration of presphaerol (8). It was

Table 1. ¹H NMR spectral data for compound 1

Н	δ (CDCl ₃)	J (Hz)
1	4.59 (1H, dd)	10 and 3
2	6.12 (1H, dd)	10 and 3
3	5.90 (1H, dd)	10 and 5
4	2.42 (1H, dd)	6 and 5
6ax*	1.26 (1H, ddd)	14, 14 and 3
6eq† 7ax*	1.75-1.85 (2H, complex signal)	
7eq†	1.62 (1H, ddd)	14, 4 and 3
9	2.01 (1H, d)	10
10	2.59 (1H, dd)	10 and 10
12	3.37 (1H, dd)	3.5 and 3
13ax	2.64 (1H, ddd)	11, 11 and 3
13eq	2.09 (1H, ddd)	13, 3.5 and 3.5
14	4.53 (1H, dd)	11 and 3.5
15	1.27 (3H, s)	
16	1.45 (3H, s)	
17	3.55 (1H, d)	10.3
17'	4.09 (1H, d)	10.3
18	2.12 (1H, m)	
19/20	0.98 (3H, d)	7
20/19	1.03 (3H, d)	7

^{*†}Assignments may be reversed.

identified by comparison of its properties with those of an authentic sample [5].

The remaining compound (4) was an isomer of 3 and had very similar ^{1}H NMR spectral properties, the only difference being the absence of a vinylic methyl signal and the presence of two 1H broad singlets (δ 4.80 and 4.77) attributable to a =C=CH₂ group. Structure 4 was proved by careful analysis of the mixture obtained by dehydration

of presphaerol which revealed the presence of small quantities of 4.

EXPERIMENTAL

General. IR: CHCl₃; ¹H NMR: 500 MHz, chemical shifts in ppm (δ) relative to TMS; prep. LC: Varian 5000 apparatus using a dual cell refractometer detector; optical rotations: CHCl₃; GC: coiled SE-30 fused silica capillary column (30 m \times 0.326 mm, J & W Scientific, Inc, H₂ as carrier gas, 140°).

Plant material. Sphaerococcus coronopifolius was collected at 8-12 m depth in the autumn of 1985 near Massalubrense, Bay of Naples. A voucher specimen is deposited at the Dipartimento di Chimica Organica e Biologica, Naples, Italy.

Extraction and purification. CHCl₃ extraction of the freezedried and ground alga (4 kg) afforded 15 g of a residue which was chromatographed on a silica gel (450 g) column. The polarity of the solvent (hexane) was increased with EtOAc until the solvent composition became hexane—EtOAc (3:2). Fractions exhibiting similar TLC profiles were combined to give fractions A, B and C in order of increasing polarity.

Fraction A (10 mg) was subjected to prep. HPLC (Si 60 LiChrosorb-Merck, eluent *n*-hexane) to give 3 (4.0 mg) and 4 (2.5 mg).

Compound 3, oily, $[\alpha]_D = +28^\circ$, had spectral (IR, MS and ¹H NMR) and chromatographic (TLC, HPLC and GLC) properties identical with those of the product previously isolated by dehydration of presphaerol [5].

Compound 4, oily, $[\alpha]_D = +18^\circ$, $1R v_{max} \text{ cm}^{-1}$: 1650 and 895; $[M]^+$, m/z 272; 1H NMR (CDCl₃): δ 0.84 (3H, d, J=7 Hz, 3H-19/20), 0.94 (3H, d, J=7 Hz, 3H-20/19), 1.66 (3H, s (br) 3H-15), 2.39 (1H, m, H-9), 4.80 and 4.77 (2H, s (br), s, 2H-16), 5.40 (1H, d (br), J=5 Hz, H-11). Chromatographic (TLC, HPLC and GLC) and spectral (IR, MS and 1H NMR) properties of 4 were identical to those of an authentic sample synthesized as described below.

Fraction B (27 mg) was purified by HPLC (RP 18, LiChrosorb-Merck, eluent MeCN) to give 18 mg of pure 2, $[\alpha]_D = -34^\circ$; mp = 89-92°, IR ν_{max} cm⁻¹. 3350-3100; [M]⁺, m/z 462, 464, 466; ¹H NMR (CDCl₃): δ 0.91 (3H, d, J = 7 Hz, 3H-19/20), 0.97 (3H, d, J = 7 Hz, 3H-20/19), 1.29 (3H, s, 3H-15), 1.46 (3H, s, 3H-16), 2.36 (1H, q, J = 12 Hz, H_{ax} -13), 3.04 (1H, d (br), J = 6 Hz, H-9), 3.36 (1H, dd, J = 12 and 4 Hz, H-12), 3.62 and 3.95 (1H each, AB system, J = 10 Hz, 2H-17), 3.90 (1H, dd, J = 12 and 3 Hz, H-14), 5.70 (1H, m, H-2), 6.04 (1H, dd, J = 9 and 2 Hz, H-1).

Fraction C (49 mg) was subjected to prep. HPLC (RP 18, LiChrosorb-Merck, eluent MeCN) to yield pure 1 (32 mg), $[\alpha]_D$ = 39°; mp = 88-90°; IR: 3300-3050 cm⁻¹; HRMS: $[M]^+$ 478.07185 (calc. for $C_{20}H_{32}^{79}Br_2O_3$ 478.07191); ¹H NMR: Table 1.

Dehydration of 8 to afford 3 and 4. CH₃COCl (0.5 ml) was added to a soln of 8 (42 mg) in xylene (2 ml) and the mixture was heated under reflux for 1 hr. After cooling, H₂O (2 ml) was added and the organic layer was taken to dryness. The residue was subjected to HPLC (RP 18, LiChrosorb-Merck, eluent MeOH) to give 3 (6 mg) and 4 (3 mg).

Oxidation of 2 to give 1. Pyridinium chlorochromate (13 mg) was added to a suspension of anhydrous NaOAc (4 mg) in CH₂Cl₂ (2 ml) containing 2 (14 mg). After stirring at room temp. for 2 hr the mixture was diluted with Et₂O and filtered. Evaporation of the filtrate and chromatography of the residue on TLC (silica gel) in CHCl₃ gave 6 mg of sphaerococcenol (7) [4].

Catalytic hydrogenation of 5 to give 6. 5 (23 mg) in EtOH (2 ml) was hydrogenated over 10% Pd/C (4 mg) at room temp. and atmospheric pressure for 3 hr. After removal of the catalyst by filtration, the soln was evaporated to dryness and the residue was purified by HPLC (RP 18, LiChrosorb-Merck, eluent MeOH) to give 7 mg of 6. [α]_D = -8° ; mp = 95-97°; IR: 3300-3050 cm⁻¹; [M]⁺, m/z 464; ¹H NMR (CDCl₃): δ 1.02 (3H, d, d) = 7 Hz, 3H-19/20), 1.07 (3H, d, d) = 7 Hz, 3H-20/19), 1.29 (3H, d), 3H-16), 1.44 (3H, d), 3H-15), 1.78 (1H, d), d = 13 Hz, H-9) 2.15 (1H, d), d0, d0, d1, d3, d3, d4, d4 Hz, d6, d7 = 13, 13 and 4 Hz, d8, d9, 3H-16), 1.44 (1H, d0, d9, 3H-16), 3.92 (2H, AB system, d9, 5Hz, 2H-17), 4.48 (1H, d0, d1, d1, d1, d3, and 4 Hz, d1, d1, d3, d1, d4, d4, d5, d9, 3H-14).

Reduction of 1 to obtain 6. A soln of 1 (7 mg) in HOAc (1 ml) and perchloric acid (0.1 ml) was hydrogenated over 10% Pd/C (3 mg) for 2 hr at room temp. and atmospheric pressure. Following the usual work up compound 6 (3 mg) was isolated by HPLC

Acknowledgements—This work was supported by the Ministero della Pubblica Istruzione (Italy) and C.N.R. (Progetto Finalizzato Chimica Fine e Secondaria). Thanks are due to Miss Rita Carolla for efficient technical assistance.

REFERENCES

- Cafieri, F., Fattorusso, E. and Santacroce, C. (1984) Tetrahedron Letters 25, 3141.
- Cafieri, F., Fattorusso, E., Mayol, L. and Santacroce, C. (1985)
 J. Org. Chem. 50, 3982.
- Cafieri, F., Ciminiello, P., Fattorusso, E. and Santacroce, C. (1982) Experientia 38, 298.
- 4. Fenical, W., Finer, J. and Clardy. J. (1976) Tetrahedron Letters
- Cafieri, F., Di Blasio, B., Fattorusso, E. and Pedone, C. (1981) Tetrahedron Letters 41, 4123.